5x^2+2(2x^2-7)-6=3x^2+28

Simple and best practice solution for 5x^2+2(2x^2-7)-6=3x^2+28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2+2(2x^2-7)-6=3x^2+28 equation:



5x^2+2(2x^2-7)-6=3x^2+28
We move all terms to the left:
5x^2+2(2x^2-7)-6-(3x^2+28)=0
We multiply parentheses
5x^2+4x^2-(3x^2+28)-14-6=0
We get rid of parentheses
5x^2+4x^2-3x^2-28-14-6=0
We add all the numbers together, and all the variables
6x^2-48=0
a = 6; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·6·(-48)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*6}=\frac{0-24\sqrt{2}}{12} =-\frac{24\sqrt{2}}{12} =-2\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*6}=\frac{0+24\sqrt{2}}{12} =\frac{24\sqrt{2}}{12} =2\sqrt{2} $

See similar equations:

| (2y-3)-(-2y+4)=0 | | -9=7-2v | | 0.78(m+2)=3.9 | | 1.7z+3.4=-5.1 | | 30=2xx | | 6x2+36x+54=0 | | 10x+1-5x+9=8x-5+6x | | 8-5(y+1)=-2(3y-5) | | 8-5(y+1)=-2(3y-5 | | 36x+20=7x | | 7(x-2)=3x=7 | | x+1.4x=40000 | | -(1/3)(x-5)(x+5)=0 | | –4=g+1 | | (2x)(3x)(3x)=384 | | 1.1(c+-3.4)=-1.43 | | 9-(4n-6)=7-5n | | 16/x-x=0 | | 2y-5y=9 | | 8a-6a=16 | | 16x+5+9x-1+76=180 | | C=(4x+8)*3.14 | | 18=3a+6a | | 7x+1+8x+4=85 | | 10s+21=14s+13 | | -7x=11x2-3 | | 2-5t+3=-5 | | 7x+1=8x+4 | | 90=3x+3x+3x | | 2v=3v-82 | | 40x+31=29 | | x=0.0064-(0.0064*x) |

Equations solver categories